СТАНКИ ДЛЯ МЕТАЛЛООБРАБОТКИ

Сделано в России

SEMAT – высокотехнологичные станки для металлообработки

Российская компания ООО «СЕМАТ» (торговая марка SEMAT) разрабатывает и производит электрохимические и электроэрозионные станки для обработки металлических деталей, а также установки ультразвукового деформационного упрочнения.

Наша цель — создание высокотехнологичного оборудования и нового российского бренда в мировом станкостроении.

Сегодня мы решаем задачи обработки деталей из токопроводящих материалов в тех случаях, когда совершить обработку другими способами, в том числе и традиционной механической обработкой, оказывается сложно или полностью невозможно.

Мы способны решить сложные задачи, даже когда лучшие зарубежные технологии бессильны.

Компания является резидентом Инновационного Центра «Сколково», деятельность которого направлена на содействие успешной реализации инновационных технологических стартапов в различных отраслях экономики нашей страны.

Направления работы:

НИОКР

по многокоординатной электрохимической обработке и ультразвуковому деформационному упрочнению металла

Проектирование и производство станков,

основанных на электрофизических методах обработки труднообрабатываемых изделий

Инжиниринг и услуги по обработке деталей

В рамках кластера Промтех Сколково наша компания занимается исследованиями и разработкой электрохимического оборудования для многокоординатной электрохимической обработки стержневым электрод-инструментом, а также разработкой и производством установок ультразвукового деформационного упрочнения с искусственным интеллектом в системе управления.

На базе Технопарка «Сколково» SEMAT обладает собственной опытно-производственной площадкой со всеми необходимыми ресурсами и оборудованием.

Одним из главных преимуществ и активов компании является профессиональная команда, которая объединяет в себе высококлассных конструкторов, технологов и инженеров по электрофизическим методам обработки металлов, а также опытных специалистов в управлении и продажах.

Стратегическое видение SEMAT:

развитие и распространение технологий электрохимической обработки и ультразвукового деформационного упрочнения в РФ и в мире.

Компания стремится к развитию дилерской сети и выходу на зарубежные рынки с экспортными продажами.

Основой для достижения амбициозных целей являются уникальные технологии и высокая компетенция, дополненные НИОКР, патентами и высококлассным сервисом.

Технологии:

- Ультразвуковое деформационное упрочнение (УЗУ)
- Электрохимическая обработка (ЭХО)
- Электроэрозионная обработка (ЭЭО)

Отрасли и сферы применения:

- микромеханика и микроэлектроника
- инструментальное производство
- энергетическое машиностроение
- оружейное производство
- аддитивные технологии
- ювелирное производство

- космическая промышленность
- авиационная промышленность
- автомобильная промышленность
- двигателестроение
- приборостроение
- медицина

Ключевая ценность сотрудничества **с SEMAT –**

Возможность получить изделия с уникальными свойствами, обеспечивающие радикальные конкурентные преимущества, или значительно снизить себестоимость путем применения электрофизических методов обработки или ультразвукового упрочнения.

Партнерство с нами позволяет добиться существенных результатов:

- + Снижение трудозатрат
 - Отсутствие износа инструмента
- Рост уровня конкурентоспособности изделия
- + Снижение времени обработки

- + Снижение себестоимости
- Улучшение качества поверхности
- Улучшение качественных характеристик продукции

Ключевые преимущества SEMAT:

Российское производство

Предпроектная тестовая обработка и НИОКР

Собственные технологии и патенты

Простая и удобная система управления

Гибкая адаптация под требования заказчика

Постпродажный период (гарантия 2 года + сервис)

Техническое и технологическое сопровождение

SEMAT - не просто компания, это:

- Редкая для России цепочка от лаборатории до промышленного производства
- Коллектив профессионалов в технологиях, производстве и продажах
- Годы работы, известные бренды в числе клиентов и доверие крупных государственных учреждений
- Успешный резидент Инновационного центра «Сколково»
- Надежный российский производитель высокотехнологичного оборудования для металлообработки

SEMAT — это новое слово в обработке металлов!

SEMAT: решаем сложные задачи современных производств

Проектирование и производство высокотехнологичных станков:

- Электрохимическая обработка (ЭХО)
- Электроэрозионная обработка (ЭЭО)
- Ультразвуковое деформационное упрочнение (УЗУ)

Услуги для производственных предприятий:

- Услуги по ЭХО | ЭЭО | УЗУ | 3D SLM
- НИОКР и инжиниринг
- Сервисное обслуживание

Производственные мощности лаборатории **SEMAT**

- + Электроэрозионный проволочно-вырезной станок
- + Электроэрозионный копировально-прошивной станок с подвижным столом
- Универсальный электрохимический станок для прецизионной размерной электрохимической обработки (копировально-прошивочный)
- + Установка для электролитно-плазменной полировки
- Установка ультразвукового упрочнения
- Электрохимический станок для снятия заусенцев
- + 3D принтер по металлу SLM

Конструкторские разработки **SEMAT**

Важной частью работы компании являются разработки и исследования по двум направлениям, которые мы проводим в рамках нашей инновационной деятельности в Сколково:

Проектирование и производство станков

для многокоординатной электрохимической обработки стержневым электрод-инструментом

Проектирование и производство установок

ультразвукового деформационного упрочнения с искусственным интеллектом в системе управления

В результате исследовательской деятельности по направлению электрохимической обработки реализуется проект создания опытного промышленного образца «Электрохимического многокоординатного станка модульной системы для обработки стержневым вращающимся электродом» с возможностью последующего запуска серийного промышленного производства.

Целевой продукт – электрохимические многокоординатные станки модульной системы, которые будут способны обрабатывать по программе ЧПУ любые токопроводящие детали с высочайшим качеством поверхности без специального электрода (универсальным электродом типа «фреза» или «проволока»), без расходных материалов (кроме водного раствора электролита) и без изменения структуры детали (нагрева, наклепа и пр.).

В рамках НИР в области ультразвукового деформационного упрочнения проработаны инновационные решения с целью усовершенствования конструкции волноводов, автоматизации ПО и технологии упрочнения, наработки экспериментальной базы для применения в системе управления алгоритмов искусственного интеллекта.

POCCEDECEAN CHETCHANDER

Ультразвуковое деформационное упрочнение **(УЗУ)**

Описание

Ультразвуковое деформационное упрочнение изделий сложной формы за счёт кинетической энергии движущихся рабочих тел (стальных шариков) с использованием (или без) мелкодисперсных порошкообразных легирующих материалов.

Эффект ультразвукового деформационного упрочнения:					
Повышение статической > на 1350% прочности	Увеличение циклической удо 10 раз долговечности	Изменения > 12 микрона			

Преимущества:

- автоматическое определение детали и выбор соответствующей программы
- современная элементная база
- компактный размер
- удобный и понятный интерфейс
- возможность дистанционного мониторинга и подключения к заводским сетям

- возможность дистанционного пополнения базы знаний экспертной системы
- подсчет сделанных деталей
- протоколирование работы
 - хранение, редактирование сотен программ

Сферы применения ультразвукового упрочнения:

- детали авиационных газотурбинных двигателей
- детали КПП, РК и шасси автомобилей
- детали двигателя (шатуны, болты, рычаги, клапаны)
- детали спортивного оружия
- штамповая оснастка
- и слесарно-монтажный инструмент

Сравнение технологий:

Дробеструйное/дробеметное упрочнение - невозможность равномерной обработки сложно-фасонных изделий - высокая стоимость - большое энергопотребление - большая занимаемая площадь - затраты на ремонт и обслуживание - Ультразвуковое деформационное упрочнение + равномерная обработка сложно-фасонных изделий + высокая производительность + низкое энергопотребление + компактность + низкие затраты на ремонт и обслуживание

Применение ультразвукового деформационного упрочнения в авиационном двигателестроении

Задача:

Повысить ресурс турбинных лопаток для современного турбореактивного двигателя.

Проблема:

Для решения задачи можно применить поверхностное деформационное упрочнение

Но существующие дробеметные и дробеструйные установки зачастую

приводят к недопустимой деформации входной и выходной кромок и ухудшению чистоты поверхности с Ra 0,2 до Ra 0,8.

Решение: Ультразвуковое упрочнение

Ультразвуковое упрочнение, обеспечивает равномерную обработку и не приводит к недопустимым деформациям лопаток (усталостная прочность лопатки увеличивается в 10,58 раз)

* проектирование и изготовление уникальной оснастки для быстрого закрепления деталей.

Усталостная **прочность лопатки увеличилась в 10,5 раз**

благодаря технологии ультразвукового упрочнения

УЗУ оборудование

Характеристики станков	Sk-UIT100	Sk-UIT350	Sk-UIT450	
макс. размеры обрабатываемых изделий, мм	150x150x100	150x150x350	150x150x450	
макс. масса обрабатываемых изделий, кг	10	20	20	
размеры волновода, мм	Ø200x130	Ø200x410	Ø200x500	

Общие характеристики:

габаритные размеры установки*
масса установки
производительность установки
диаметр стальных шариков
время обработки 1 детали или партии деталей
мощность установки
питание оттрёхфазной сети с нулевым проводом

1235х1000х1553 мм
300 кг
10-100 шт./ч

Установка ультразвукового упрочнения **Sk-UIT350**

^{*}длина – ширина – высота

Электрохимическая обработка (ЭХО)

Описание

Электрохимическая обработка (ЭХО) или Electro Chemical Machining (ECM) – бесконтактный метод обработки.

Механизм растворения (удаления металла) при электрохимической обработке основан на процессе электролиза.

Съём металла происходит по закону Фарадея, согласно которому количество снятого металла пропорционально силе тока и времени обработки.

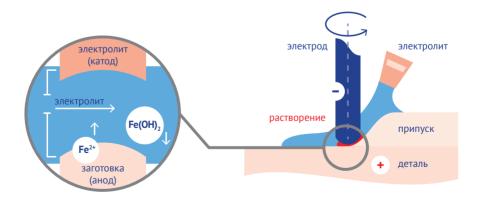
Преимущества:

высокая производительность обработки (линейная скорость съема металла на прецизионных режимах обработки составляет 0,3 мм/мин.)

отсутствие износа электрод-инструмента позволяет обеспечить высокую точность обработки и повторяемость, снизить эксплуатационные затраты при серийном изготовлении изделий

проведение финишных операций не требуется

высокое качество обработанной поверхности



отсутствие дефектного слоя и заусенцев на поверхности

при обработке исключается образование на поверхности детали термических напряжений и микротрещи

Процесс электрохимической обработки

Применение электрохимической обработки в приборостроении и микроэлектронике

Задача:

Изготовить партию подложек (500 шт.) с кольцевидной канавкой в центре для гибридных микросхем.

Проблема:

Выбор подходящей технологии обработки

При использовании штамповки получается **недопустимо большое**

скругление краев канавки. Поскольку материал мягкий, при механической обработке край канавки задирается. При электроэрозионной обработке края получаются идеальными, но создается недопустимый дефектный слой.

Решение: Электрохимическая обработка

Использование электрохимической обработки (ЭХО) позволило получить нужную форму краёв и дна канавки. Дефектный слой отсутствует, а шероховатость соответствует требованиям чертежа.

Оснастка простая и легкая в изготовлении. Электрод в процессе работы абсолютно не изнашивается.

Идеальная форма краев и дна канавки

Шероховатость соответствует требованиям

ЭХО оборудование

Серия/модель станка	Назначение	Область применения
Sk-ECM-Micro	микрополировка	- медицинские инструменты
	матирование	- импланты
	заточка	- электротехника
Sk-ECM-D	снятие заусенцев	- детали топливной аппаратуры
	полировка	- пневмо/гидро системы
	скругление кромок	- машиностроение
Sk-ECM1000	размерная обработка	- инструментальные производства
Sk-ECM4000	копировально-прошивочные	- штампы / пресс-формы
Sk-ECM8000	операции	- машиностроение
		- медицинские инструменты
Sk-ECM-Multi Axis	многокоординатная обработка	- серийные детали для авиационной и космической техники

Станки для размерной обработки **Sk-ECM1000, Sk-ECM4000, Sk-ECM8000**

Электрохимический станок для снятия заусенцев и полировки - Sk-ECM-D

Описание:

Станок электрохимический модели **Sk-ECM-D** предназначен для удаления заусенцев и скругления острых кромок в деталях из конструкционных, жаропрочных, закаленных, магнитных сталей и сплавов, алюминиевых и титановых сплавов

Применение станка целесообразно:

- для удаления заусенцев с инструмента, деталей машин и приборов, имеющих сложную конструкцию,
- для обработки в труднодоступных местах (внутренние пересечения поверхностей, карманы и др.)
- для операций, не допускающих изменений физико-химических свойств поверхностного слоя после обработки

Особенности:

- Компактная планировка (3 м²) на едином основании
- Модульная конструкция
- Система очистки электролита
- Изменение базовых параметров по требованиям заказчика
- Технологическое сопровождение:
 - проектирование и производство технологической оснастки
 - проектирование и производство электрод-инструмента
 - оптимизация режимов обработки

арактеристики станка Sk-ECM-D	
иасса механической части станка	< 600 кг
размер рабочей поверхности стола (длина х ширина)	550х550 мм
закрепление оснастки на рабочем столе	Отв. М8, шаг 110х110 мм
время обработки	560 c
наличие накопителей инструмента	нет
предельные размеры устанавливаемой детали	530 — 530 — 530 мм
длина — диаметр — высота (с приспособлением)	
наибольший вес заготовки с приспособлением	90 кг
питающая сеть тип 3PEN (3PE+N)	Переменный, трехфазный
напряжение, частота тока	380 B ± 10% 50 Гц ± 2%
потребляемая мощность	< 20 κBτ
диапазон тока	1450 A
точность поддержания заданного напряжения	5%
диапазон напряжений	730 B
диапазон входного давления	0,16 атм.
максимальное давление в пневмосистеме	6 атм.
используемые электролиты	115% NaCl, NaNO3
вместимость баков для электролита	600 л.
максимальный расход электролита	5 л/мин

Электрохимические копировально-прошивочные станки – Sk-ECM1000, Sk-ECM4000, Sk-ECM8000

Описание

Предназначены для размерного формообразования (копировально-прошивочных операций) изделий из токопроводящих материалов.

Формирование обработанной поверхности достигается обратным копированием размеров и формы электрод-инструмента при анодном растворении заготовки.

Особенности:

- Разграничение прав доступа, мониторинг и протоколирование работы
- Экспертная система, облегчающая подбор режима обработки новых деталей
- Автоматическая идентификация деталей, выбор программы и подсчет обработанных деталей

Дополнительные возможности:

+ возможность подключения дополнительных управляемых осей

+ возможность включения в автоматизированные производственные линии

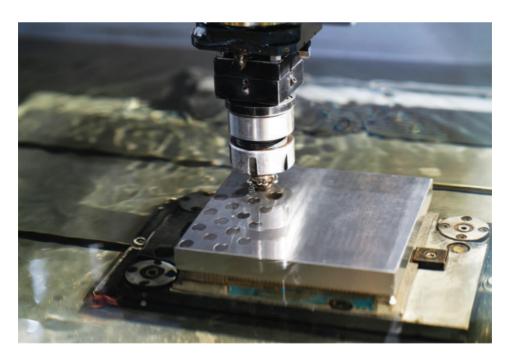
Характеристики станков	Sk-ECM1000	Sk-ECM4000	Sk-ECM8000
максимальный постоянный ток, А максимальный импульсный ток, А	450 1300	1350 4000	2600 8100
максимальная площадь обработки, см²	20	60	120

Общие характеристики:

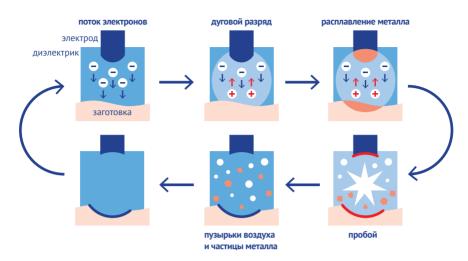
площадь, занимаемая станком размеры рабочей поверхности стола количество управляемых координат максимальные координатные перемещения точность отчёта перемещений по оси Z скорость быстрых перемещений скорость рабочих перемещений объем бака для электролита

4.5 м²
изменяемый параметр (по запросу)
1 (до 4 осей по запросу)
250 мм
0.001 мм
500 мм/мин
0,001 – 3 мм/мин
1000 л

Электроэрозионная обработка (ЭЭО)


Описание

В основе электроэрозионного способа обработки (размерного удаления с обрабатываемой заготовки материала) лежит использование концентрированных электрических разрядов.


ЭЭО — контролируемое разрушение электропроводного материала под действием электрических разрядов между двумя электродами, то есть обработка через электрическую эрозию.

При заданном напряжении от источника питания между инструментом (электродом) и деталью, погруженными в диэлектрик (например, масло), при их постепенном сближении в определенный момент, возникает электрический разряд (пробой), в канале которого образуется плазма с высокой температурой. В результате происходит вырывание и испарение частиц материала («эрозия»).

Применение серий таких разрядов с одновременным последовательным перемещением инструмента относительно обрабатываемой детали и является физической основой метода.

ЭЭО / EDM принцип

Преимущества

высокое качество получаемых поверхностей (точность), не требующее дальнейшей обработки

обработка ведется на станках с ЧПУ, поэтому возможно получение самых разнообразных по геометрии форм поверхностей

возможность обрабатывать поверхность с очень высокой твердостью, свыше 60 единиц MI 01

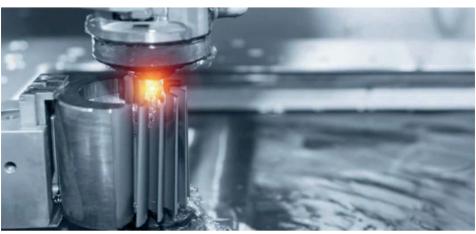
минимальный износ электрод-инструмента от 0,2%

тонкостенные детали не деформируются, т.к. нет механической нагрузки

отсутствие шума по сравнению с механической обработкой

возможность получения различных текстур поверхности

Применение электроэрозионной обработки в приборостроении



Решение: Изготовление шестерен на электроэрозионном станке SEMAT SkW5030L

- + Изготовление геометрической формы с радиусом R0.1 мм обеспечивается за счет использования латунной проволоки D0.1 мм.
- **+** Шероховатость Ra 0.25 получается за 5 проходов за счет собственной программы обработки.
- Использование цангового патрона позволяет изготовлять сразу 10 шестерен это существенно сокращает затраты на обработку всей партии деталей.

ЭЭО оборудование

Тип станков Область применения Назначение - космическая проволочно-вырезные производство и изготовление станки вырубных штампов, - авиационная экструзионных матриц, - автомобильная прецизионных изделий, - двигателестроение инструментов - приборостроение - микромеханика копировально-прошивные производство штамповой оснастки и микроэлектроника станки и пресс-форм - инструментальное обработка деталей машин и приборов производство - энергетическое «супердрели» изготовление глубоких отверстий машиностроение маленького диаметра - оружейное производство прошивка отверстий в изделиях - медицина из твердых и жаропрочных сплавов

Электроэрозионный проволочно-вырезной станок с линейными двигателями **SkW5030L**

Электроэрозионный копировально-прошивной станок с неподвижным столом **SkC5040**

Супердрель **SkD3025-SkD5040**

Электроэрозионные проволочно-вырезные станки SEMAT с линейными двигателями

Электроэрозионный проволочно-вырезной станок с линейными двигателями **SkW5030L**

Электроэрозионный проволочно-вырезной станок с подвижным столом **SkW6040U** Электроэрозионный проволочно-вырезной станок с неподвижным столом **SkW1165U**

	SkW4030L	SkW5030L	SkW5636L	SkW6040L	SkW7550L
ход осей Х-Ү-Z, мм	400x300x220	500x300x300	560x360x300	600x400x300	750x500x300
макс. р-р. заготовки, мм	790x610x215	990x620x295			1190x720x295
макс. вес заготовки, кг	350	400	500	550	750

Общие характеристики:

- ход конусных осей U-V 100х100 мм
- макс. угол наклона ±21°/100 мм проволоки
- макс. вес катушки проволоки, кг 10 (45 опция)
- диаметр проволоки, мм 00,15-0,33 (опция 00,1 мм)
- шероховатость Ra 0,36 (0,08 опция)

Электроэрозионные проволочно-вырезные станки SEMAT с подвижным столом

	SkW3525U	SkW5030U	SkW5636U	SkW6040U	SkW7550U	SkW9050U
ход осей Х-Ү-Z, мм	350x250x220	500x300x300	560x360x300	600x400x300	750×500×300	900x500x300
макс. р-р. заготовки,мм	765x535x215	990x620x295			1190x720x295	1335x760x295
макс. вес заготовки, кг	300	400	500	600	800	

Общие характеристики:

- ход конусных осей U-V 100х100 мм (кроме SkW3525U) макс. вес катушки проволоки
- макс. угол наклона ±21°/100 мм проволоки
- макс. вес катушки проволоки 10 кг (45 опция)
- диаметр проволоки Ø0,15 0,33 мм (опция Ø0,1 мм) шероховатость Ra 0,36 (0,15 опция)

Электроэрозионные проволочно-вырезные станки SEMAT с неподвижным столом

	SkW8060U	SkW8060UH	SkW1165U	SkW1165UH	SkW1480U	SkW1480UH
ход осей Х-Ү-Z, мм	800x600x400	800x600x600	1100x650x400	1100x650x600	1400x800x200	1400x800x800
макс. размер заготовки, мм	1330x990x395	1330x990x595	1620x990x395	1620x990x595	1740x1080x195	1740x1080x795
макс. вес заготовки, кг	5000				4000	10000

Общие характеристики:

- ход конусных осей U-V 150х150 мм
- макс. угол наклона ±21°/100 мм проволоки
- диаметр проволоки
- макс. вес катушки проволоки
- шероховатость
- Ø0,15-0,33 мм (опция Ø0,1 мм)
- 16 кг (45 опция)
- Ra 0,36 (0,15 опция)

Электроэрозионные копировально-прошивные станки SEMAT с подвижным столом*

	Sk3025M / Sk3025S	Sk4030M / Sk4030S	Sk5040M / Sk5040S
размеры станка, мм**	1833x1770x2250	2315x2238x2250	2340x2320x2500
размер стола, мм	600x300	650x400	800x450
макс. размер детали, мм**	800x450x280	1000x550x360	1250x650x390
макс.вес заготовки, кг	800	1300	1400
макс.вес электрода, кг	100	130	185
одинарный ход по оси Х, мм	300	400	500
ход по оси Ү, мм	250	300	400
ход по оси Z, мм	150 (300)	185 (350)	185 (400)
ход по оси U (головы), мм	200	250	300
макс.рабочий ток, А	30	50	75
удельный съем материала, мм³ / мин.	250	400	600

Общие характеристики:

- чистота обработки поверхности Ra, мкм 0.25 \checkmark защита от врезания по осям - точность позиционирования, мм 0.001 \times двойной ход по оси X,

Электроэрозионные копировально-прошивные станки SEMAT с неподвижным столом

	SkC5040	SkC6045	SkC7050	SkC8060	SkC1060	SkC1270
размеры станка, см**	287x375x267	310x378x267	357x392x278	393x398x288	401x405x288	438x433x292
размер стола, см	90x50		100x60	120x70	125x75	140x85
макс. размер детали, см**	130x87x52	150x97x52	170×110×60	180x115x60	20x115x62,5	224x130x62,5
макс.вес заготовки, кг	2500	3000		4000	4500	5000
макс.вес электрода, кг	200	250	350			400
одинарный ход по оси Х	500	600	700	800	1000	1200
двойной ход по оси Х	×					
ход по оси Ү	400	450	500	600		700
ход по оси Z	350	400		500		
макс.рабочий ток	75					
удельный съем материала	600					

	SkC1470	2SkC1685	SkC2085	2SkC1885	2SkC2085	2SkC3010
размеры станка, см**	455x525x383	543×555×383	544x539x383	584x555x383	651x576x383	678x630x383
размер стола, см	185×110		200×110		245x110	310×110
макс. размер детали, см**	242x155x70	260x170x80	310x170x80	285x170x80	310x170x80	410x170x80
макс.вес заготовки, кг	6300	6500	8800	6800	10000	16000
макс.вес электрода, кг	500					
одинарный ход по оси Х	1400	1600	2000	1800	2000	3000
двойной ход по оси Х	×	900/450	Нет	1100/550	1800/900	2550/1275
ход по оси Ү	700/1000	850/1000				
ход по оси Z	500 (600)	600				
макс.рабочий ток	100					150
удельный съем материала	850					1250

Общие характеристики:

√ защита от врезания по осям
 -чистота обработки поверхности Ra, мкм
 0.25
 х ход по оси U (головы)
 -точность позиционирования, мм
 0.001

🗴 перемещения по осям X, Y обеспечивается вручную

^{*}модели «...S» – однокоординатные, «...М» – многокоординатные **длина – ширина – высота

Электроэрозионный копировально-прошивной станок с неподвижным столом **SkC5040**

Электроэрозионный копировально-прошивной станок с неподвижным столом **SkC1470**

Электроэрозионный копировально-прошивной станок с неподвижным столом **SkC7050**

Электроэрозионный копировально-прошивной станок с подвижным столом **Sk3025M**

Супердрель **SkD2520**

Супердрель **SkD3025-SkD5040**

Супердрели однокоординатные

	SkD2520	SkD3025	SkD4030	SkD5040
размеры станка, мм*	950x1140x2000	900x1140x2200	1200×1600×2100	1400×1700×2100
вес станка, кг	600	1000	1520	1600
размеры стола, мм	450x210	600x300	650x400	800x450
макс. размер заготовки, мм*	630x430x160	850x530x300	1000x600x300	1200x700x300
макс. вес заготовки, кг	250	400	600	1000
макс. расстояние от стола до суппорта электрода, макс. глубина обработки, мм	150	350		
перемещение по осям XxYxZ, мм	250x200x350	300x250x350	400x300x350	500x400x350
перемещение по оси U (ручное перемещение), мм	×	200		
генератор тока	30А (опция до 75А)		50А (опция до 75А)	

Общие параметры:

- макс. скорость обработки
 - разрешающая способность по осям X, Y, Z
 - тип стола
 5 мкм
 подвижный XY

- управляемые оси по программе 1(Z)

- диаметр электрода Ф0,2...3,0мм (возможна комплектация до Ф0,1 мм с погружной ванной

и рабочей средой «масло»

- автомат. сменщик электрода х - автомат. сменщик направляющей электрода

Супердрели многокоординатные

	SkD3025M	SkD4030M	SkD5040M	SkDC6040M	SkDC6040MA
размеры станка, мм*	1300x1600x2600	1700x1950x2600	1800x2050x2600	2000x2550x2150	1580x1250x2470
вес станка, кг	1100	1500	1600	1650	1200
тип стола	подвижный XY			неподвижный	
размеры стола, мм	600x300	650x400	800x450	800×500	650x450
макс. размер заготовки, мм*	850x530x300	1000x600x300	1200x700x300	1000x700x300	900x500x300
макс. вес заготовки, кг	400	600	1000	950	700
мин./макс. расстояние от стола до суппорта электрода, макс. глубина обработки, мм	50/400	50/400	50/400	20/370	25/425
перемещение по осям XxYxZ, мм	300x250x350	400x300x350	500x400x350	600x400x350	600x400x400
перемещение по оси U, мм	350				450
генератор тока	30А (опция до 75А) 50А (опция до 75А)				_
автоматический сменщик направляющей электрода, кол-во позиций	x				опция 3 или 6

Общие параметры:

- макс. скорость обработки 6

- разрешающая способность по осям X, Y

- управляемые оси по программе

- диаметр электрода

-автоматический сменщик электрода,

кол-во позиций

60 мм/мин

1 мкм

4(XYZU) + 2 оси поворотного стола (ось U-опция)

00,2...3,0мм (возможна комплектация до 00,1 мм с погружной ванной

и рабочей средой «масло»)

опция 10 или 20

^{*}ширина – глубина – высота

Услуги SEMAT

НИОКР

Проведение исследований и опытных работ электрофизическими методами обработки металлов.

В результате Заказчик получает значительные конкурентные преимущества своей продукции на долгие годы.

Инжиниринг

Разработка и внедрение технологических решений «под ключ» на базе станков SEMAT для авиационно-космической отрасли, ВПК, машиностроения, медицины.

Проектирование и изготовление технологической оснастки.

Техническое обслуживание

Профилактическое обслуживание и/или ремонтные работы любых электроэрозионных станков SEMAT с ЧПУ.

Услуги по **ЭХО | ЭЭО | ОЗУ | 3D SLM**

Электроэрозионная проволочная вырезка

Ультразвуковое упрочнение поверхности металлической дробью

3D печать по технологии SI M

Электрохимическая размерная обработка и/или электролитно-плазменная полировка имплантов и медицинского инструмента из нержавеющей стали, титана, кобальт-хрома и др.

Электроэрозионная и электрохимическая размернаяобработка формообразующих поверхностей штампов и пресс-форм, рабочих поверхностей режущего и ударного инструмента, деталей из нержавеющих, жаропрочных, титановых и других сплавов

Электролитно-плазменная и электрохимическая полировка наружных и внутренних поверхностей изделий, растворение металлических заусенцев в труднодоступных местах, в т.ч. обработка деталей, полученных аддитивными методами из металлических порошков

SEMAT:

сложные задачи наш фокус!

- 0 121205, г. Москва, инновационный центр Сколково, Большой Бульвар, д. 42, стр.1
- +7 (495) 150-02-85

- semat@semat.ru semat@resident.sk.ru
- www.semat.ru

